

Early Experience with I/O on Mira

Venkat Vishwanath

Steve Crusan and Kevin Harms
Argonne National Laboratory
venkat@anl.gov

Disclaimer: Mira I/O subsystem and filesystem is still work in progress. The configuration and performance will change, and we will keep users informed of these.

ALCF-1 I/O Infrastructure

ALCF uses the GPFS filesystem for production I/O

ALCF-2 I/O Infrastructure

Storage System consists of 16 DDN SFA12KE "couplets" with each couplet consisting of 560 x 3TB HDD, 32 x 200GB SSD, 8 Virtual Machines (VM) with two QDR IB ports per VM

I/O Subsystem of BG/P

I/O forwarding is a paradigm that attempts to bridge the increasing performance and scalability gap between the compute and I/O components of leadership-class machines to meet the requirements of data-intensive applications by shipping I/O calls from compute nodes to dedicated I/O nodes.

I/O Subsystem of BG/Q- Simplified View

- For every 128 compute nodes, we have two links to the I/O Node on the BG/Q Torus
- On the ION, we have a QDR Infiniband connected on a PCI-e Gen2 Slot

Control and I/O Daemon (CIOD) - I/O Forwarding mechanism for BG/P and BG/Q

- CIOD is the I/O forwarding infrastructure provided by IBM for the Blue Gene / P
- For each compute node, we have a dedicated I/O proxy process to handle the associated I/O operations
- On BG/Q, we have a thread based implementation instead of process-based

Intrepid vs Mira: I/O Comparison

	Intrepid BG/P	Mira BG/Q	Increase
Flops	0.557 PF	10 PF	20X
Cores	160K	768K	~5X
ION / CN ratio	1 / 64	1 / 128	0.5X
IONs per Rack	16	8	0.5X
Total Storage	6 PB	35 PB	6X
I/O Throughput	62GB/s	240 GB/s Peak	4X
User Quota?	None	Quotas enforced!!	-
I/O per Flops (%)	0.01	0.0024	0.24X

I/O interfaces and Libraries on Mira

- Interfaces
 - POSIX
 - MPI-IO
- Higher-level Libraries
 - HDF5
 - Netcdf4
 - PnetCDF
- Early I/O Performance on Mira
 - Shared File Write ~70 GB/s
 - Shared File Read ~180 GB/s

Early Experience Scaling I/O for HACC

- Hybrid/Hardware Accelerated Computational Cosmology code is lead by Salman Habib at Argonne
- Members include Katrin
 Heitmann, Hal Finkel, Adrian
 Pope, Vitali Morozov
- Particle-in-Cell code
- Achieved ~14 PF on Sequoia and 7 PF on Mira
- On Mira, HACC uses 1-10 Trillion particles

Zoom-in visualization of the density field illustrating the global spatial dynamic range of the simulation -- approximately a million-to-one

Early Experience Scaling I/O for HACC

- Typical Checkpoint/Restart dataset is ~100-400 TB
- Analysis output, written more frequently, is ~1TB-10TB
- Step 1:
 - Default I/O mechanism using single shared file with MPI-IO
 - Achieved ~15 GB/s
- Step 2:
 - File per rank
 - Too many files at 32K Nodes (262K files with 8RPN)
- Step 3:
 - An I/O mechanism writing 1 File per ION
 - Topology-aware I/O to reduce network contention
 - Achieves up to 160 GB/s (~10 X improvement)
- Written and read ~10 PB of data on Mira (and counting)

Few Tips and Tricks for I/O on BG/Q

- Pre-create the files
 - Increases shared file write performance from 70GB/s to 130GB/s
- Single shared file vs file per process (MPI rank)
- Pre-allocate files
- HDF5 Datatype
 - Instead of Native, use Big Endian(eg. H5T_IEEE_F64BE)
- MPI Datatypes
- Collective I/O
- MPI-IO BgLockless Environment variable
 - Prefix file with bglockless:/
 - BGLOCKLESSMPIO F TYPE=0x47504653

Darshan - An I/O Characterization Tool

- An open-source tool developed for statistical profiling of I/O
- Designed to be lightweight and low overhead
 - Finite memory allocation for statistics (about 2MB) done during MPI_Init
 - Overhead of 1-2% total to record I/O calls
 - Variation of I/O is typically around 4-5%
 - Darshan does not create detailed function call traces
- No source modifications
 - Uses PMPI interfaces to intercept MPI calls
 - Use Id wrapping to intercept POSIX calls
 - Can use dynamic linking with LD_PRELOAD instead
- Stores results in single compressed log file
- http://www.mcs.anl.gov/darshan

Darshan on BG/Q

65536

800

304

400

23066526

2378602

2172322

2029354

logs:

/gpfs/vesta-fs0/logs/darshan/vesta/gpfs/mira-fs0/logs/darshan/mira

bins:

/soft/perftools/darshan/darshan/bin

wrappers:

/soft/perftools/darshan/darshan/wrappers/<wrapper>

export PATH=/soft/perftools/ darshan/darshan/wrappers/xl:\$ {PATH}

Questions